CHROM. 17 638

# Note

# Gas-liquid chromatographic analyses

# XLI\*. Ethyl and ω-chloroethyl esters of benzoic and monochlorobenzoic acids on SE-30 and OV-351 capillary columns

## ILPO O. O. KORHONEN\* and MAIJA A. LIND

Department of Chemistry, University of Jyväskylä, Kyllikinkatu 1-3, SF-40100 Jyväskylä 10 (Finland) (Received February 11th, 1985)

Earlier studies with aromatic esters involved the gas chromatographic (GC) retention behaviour of saturated  $C_1-C_{12}$  normal-chain<sup>1</sup> and  $C_3-C_5$  branched-chain esters<sup>2</sup> and unsaturated  $C_3-C_6$  esters<sup>3</sup> of benzoic and monochlorobenzoic acids. Low-polarity (SE-30) and highly polar (OV-351) capillary columns with various temperature-programmed and isothermal operations were used to investigate the separations of the complex mixtures and to examine the retention indices and the retention index increments for the methylene unit and the chlorine substituents within the homologous series of esters.

Previously, the GC separation of a mixture of ethyl and  $\omega$ -chloroethyl esters of aliphatic C<sub>2</sub>-C<sub>20</sub> *n*-alkanoic acids on SE-30 and OV-351 capillary columns has been reported<sup>4</sup>, and more recently the retention indices and the incremental effects for the various chlorine substituents in the same series of esters have been examined<sup>5</sup>.

This work extends the earlier studies<sup>1-5</sup> to the GC retention behaviour of ethyl, 2-chloroethyl, 2,2-dichloroethyl and 2,2,2-trichloroethyl esters of benzoic and monochlorobenzoic acids on SE-30 and OV-351 capillary columns under a variety of temperature-programmed and isothermal conditions. The relative retention data, the Kováts retention indices and the retention index increments for the chlorine substituents in either the acyl or alkyl chain of the sixteen individual esters are discussed and the results are compared with those of the earlier studies with aromatic and aliphatic esters.

# **EXPERIMENTAL**

## Materials

The ethyl, 2-chloroethyl, 2,2-dichloroethyl and 2,2,2-trichloroethyl esters of benzoic (1-4), *o*-chlorobenzoic (o/1-o/4), *m*-chlorobenzoic (m/1-m/4) and *p*-chlorobenzoic (p/1-p/4) acids were prepared from the corresponding alcohols<sup>4</sup> and acid chlorides<sup>1</sup> as described earlier<sup>6</sup>.

Mixtures of n-alkanes were obtained from different commercial sources.

<sup>\*</sup> For Part XL, see I. O. O. Korhonen, J. Chromatogr., 324 (1985) 192.

# Methods

GC analyses were carried out on a Perkin-Elmer Sigma 3 gas chromatograph under the following operating conditions: injection and flame ionization detection (FID) temperatures, 250°C; nitrogen carrier gas velocities for methane at 160°C, 14.0 (SE-30) and 13.1 cm sec<sup>-1</sup> (OV-351); splitting ratio, 1:20; and chart speed, 10 mm min<sup>-1</sup>. The columns used were a low-polarity SE-30 vitreous silica wall-coated opentubular (WCOT) column (25 m × 0.33 mm I.D.), supplied by SGE (North Melbourne, Australia), and a highly polar OV-351 fused silica WCOT column (25 m × 0.32 mm I.D.), supplied by Orion Analytica (Espoo, Finland). The column temperature was programmed from 100 to 280°C (SE-30) and from 100 to 230°C (OV-351) at 2, 6 and 10°C min<sup>-1</sup> and held, if necessary, on OV-351 at 230°C until elution of peaks had ceased. The isothermal data were determined at 140, 160, 180, 200 and 220°C.

The retention times were measured from the time of sample injection; a Hewlett-Packard Model 3390A reporting integrator was used. The Kováts retention indices were calculated off-line by using two appropriate adjacent n-alkanes as described earlier<sup>7</sup>, the dead volume being determined at each isothermal temperature by the injection of methane.

The esters of the four series of aromatic acids and n-alkanes were chromatographed separately in turn owing to the incomplete resolution of the peaks of the monochloro isomers. The elution order of the individual components in a complex



Fig. 1. Chromatogram of a mixture of ethyl, 2-chloroethyl, 2,2-dichloroethyl and 2,2,2-trichloroethyl esters of benzoic (1-4), o-chlorobenzoic (o/1-o/4), m-chlorobenzoic (m/1-m/4) and p-chlorobenzoic (p/1-p/4) acids, obtained on a low-polarity SE-30 capillary column with temperature programming from 100°C at 6°C min<sup>-1</sup> until elution of peaks had ceased. S = Solvent; C<sub>14</sub> = n-tetradecane. Peaks are identified in Table I.

mixture shown in Figs. 1 and 2 was confirmed with the pure components added to the mixture and the increased peak responses obtained.

## **RESULTS AND DISCUSSION**

Chromatograms of a mixture of ethyl and  $\omega$ -chloroethyl esters of benzoic and monochlorobenzoic acids, separated on SE-30 and OV-351 with temperature programming, are shown in Figs. 1 and 2, respectively. The corresponding retention data are presented in Table I.

Fig. 1 shows that the isomers are eluted on a low-polarity SE-30 column in order of their degree of chlorination and that the m-, p- and o-chloro esters are eluted close together, as are the other esters of monochlorobenzoic acids<sup>1-3</sup>. All the m- and p-isomers are coincident, but the o-isomers, having increased retentions, are generally resolved so that the resolution increases with increasing degree of chlorination (Fig. 1 and Table I).

On a highly polar OV-351 stationary phase the retention is increased (Table I) and the elution order between the 2,2-di- and 2,2,2-trichloroethyl esters is changed, as previously shown with the corresponding aliphatic esters<sup>4,5</sup>. The separation between the isomeric compounds is better than on SE-30, *i.e.*, the peaks of the trichloroethyl esters of the m- and p-isomers are resolved and the retention of the o-isomers is markedly increased relative to that of the m- and p-isomers<sup>1-3</sup> (Fig. 2).

The elution order of the esters shown in Figs. 1 and 2 generally remained



Fig. 2. Chromatogram of the same mixture as in Fig. 1, obtained on a highly polar OV-351 capillary column with temperature programming from 100 to 230°C at 6°C min<sup>-1</sup> and held at 230°C until elution of peaks had ceased. S = Solvent;  $C_{14} = n$ -tetradecane. Peaks are identified in Table I.

TABLE I

RETENTION DATA FOR ETHYL AND @-CHLOROETHYL ESTERS OF BENZOIC AND MONOCHLOROBENZOIC ACIDS, OBTAINED ON SE-30 AND OV-351 CAPILLARY COLUMNS WITH TEMPERATURE PROGRAMMING

Conditions as in Figs. 1 and 2.

| Peak        | Compound                                   | SE-30 |       |        |                         | 01-351 |       |        |                   |                     |  |
|-------------|--------------------------------------------|-------|-------|--------|-------------------------|--------|-------|--------|-------------------|---------------------|--|
| .04         |                                            | ART*  | RRT** | RRT*** | <i>RRT</i> <sup>§</sup> | ART*   | RRT** | RRT*** | RRT <sup>\$</sup> | RRT <sup>\$\$</sup> |  |
|             | Ethyl benzoate                             | 7.96  | 0.63  | 1.00   | 1.00                    | 11.22  | 1.62  | 1.00   | 1.00              | 1.41                |  |
| 7           | 2-Chloroethyl benzoate                     | 12.11 | 0.95  | 1.52   | 1.00                    | 19.30  | 2.79  | 1.72   | 1.00              | 1.59                |  |
|             | 2,2-Dichloroethyl benzoate                 | 13.89 | 1.09  | 1.74   | 00.1                    | 20.96  | 3.03  | 1.87   | 00.1              | 1.51                |  |
| 4           | 2,2,2-Trichloroethyl benzoate              | 15.32 | 1.20  | 1.92   | 1.00                    | 20.46  | 2.96  | 1.82   | 1.00              | 1.34                |  |
| 0/1         | Ethyl o-chlorobenzoate                     | 11.00 | 0.86  | 1.00   | 1.38                    | 16.32  | 2.36  | 1.00   | 1.45              | 1.48                |  |
| 0/2         | 2-Chloroethyl o-chlorobenzoate             | 15.52 | 1.22  | 1.41   | 1.28                    | 24.62  | 3.56  | 1.51   | 1.28              | 1.59                |  |
| 0/3         | 2,2-Dichloroethyl o-chlorobenzoate         | 17.40 | 1.37  | 1.58   | 1.25                    | 26.86  | 3.89  | 1.65   | 1.28              | 1.54                |  |
| 0/4         | 2,2,2-Trichloroethyl o-chlorobenzoate      | 18.93 | 1.49  | 1.72   | 1.24                    | 26.47  | 3.83  | 1.62   | 1.29              | 1.40                |  |
| <i>m</i> /1 | Ethyl <i>m</i> -chlorobenzoate             | 10.89 | 0.86  | 1.00   | 1.37                    | 14.67  | 2.12  | 1.00   | 1.31              | 1.35                |  |
| m/2         | 2-Chloroethyl m-chlorobenzoate             | 15.49 | 1.22  | 1.42   | 1.28                    | 23.20  | 3.36  | 1.58   | 1.20              | 1.50                |  |
| m/3         | 2,2-Dichloroethyl m-chlorobenzoate         | 17.29 | 1.36  | 1.59   | 1.24                    | 25.13  | 3.64  | 1.71   | 1.20              | 1.45                |  |
| m/4         | 2,2,2-Trichloroethyl m-chlorobenzoate      | 18.61 | 1.46  | 1.71   | 1.21                    | 24.09  | 3.49  | 1.64   | 1.18              | 1.29                |  |
| p/1         | Ethyl p-chlorobenzoate                     | 10.90 | 0.86  | 1.00   | 1.37                    | 14.68  | 2.12  | 1.00   | 1.31              | 1.35                |  |
| p/2         | 2-Chloroethyl p-chlorobenzoate             | 15.50 | 1.22  | 1.42   | 1.28                    | 23.18  | 3.35  | 1.58   | 1.20              | 1.50                |  |
| p/3         | 2,2-Dichloroethyl <i>p</i> -chlorobenzoate | 17.31 | 1.36  | 1.59   | 1.25                    | 25.15  | 3.64  | 1.71   | 1.20              | 1.45                |  |
| p/4         | 2,2,2-Trichloroethyl p-chlorobenzoate      | 18.65 | 1.47  | 1.71   | 1.22                    | 24.24  | 3.51  | 1.65   | 1.18              | 1.30                |  |
| C14         | <i>n</i> -Tetradecane                      | 12.72 | 1.00  | t      | I                       | 6.91   | 1.00  | l      | 1                 | 0.54                |  |
|             |                                            |       |       |        |                         |        |       |        |                   |                     |  |

\* Absolute retention times (min) were measured from the time of sample injection (Figs. 1 and 2).

**\*\*** Relative retention time for *n*-tetradecane ( $C_{14}$ ) taken as 1.00.

**\*\*\*** Relative retention time for the corresponding ethyl ester (1, o/1, m/1 and p/1) taken as 1.00.

<sup>§</sup> Relative retention time for the corresponding ester of benzoic acid (1-4) taken as 1.00. <sup>§§</sup> Relative retention time for the corresponding compound on SE-30 taken as 1.00.

## TABLE II

RETENTION INDICES FOR ETHYL AND  $\omega$ -CHLOROETHYL ESTERS OF BENZOIC AND MONOCHLOROBENZOIC ACIDS ON SE-30

| Compound                              | Column (Si            | E-30) temper          | ature                  |         |        |       |
|---------------------------------------|-----------------------|-----------------------|------------------------|---------|--------|-------|
|                                       | Programme             | d from 100°C          | at                     | Isother | mal at |       |
|                                       | 2°C min <sup>-1</sup> | 6*C min <sup>-1</sup> | 10°C min <sup>-1</sup> | 140°C   | 160°C  | 180°C |
| Ethyl benzoate                        | 1155                  | 1143                  | 1154                   | 1166    | 1157   | 1176  |
| 2-Chloroethyl benzoate                | 1373                  | 1368                  | 1380                   | 1375    | 1380   | 1396  |
| 2,2-Dichloroethyl benzoate            | 1456                  | 1459                  | 1472                   | 1462    | 1470   | 1485  |
| 2,2,2-Trichloroethyl benzoate         | 1528                  | 1531                  | 1542                   | 1526    | 1536   | 1552  |
| Ethyl o-chlorobenzoate                | 1321                  | 1311                  | 1320                   | 1322    | 1325   | 1341  |
| 2-Chloroethyl o-chlorobenzoate        | 1540                  | 1541                  | 1552                   | 1538    | 1549   | 1559  |
| 2,2-Dichloroethyl o-chlorobenzoate    | 1629                  | 1637                  | 1651                   | 1628    | 1638   | 1653  |
| 2,2,2-Trichloroethyl o-chlorobenzoate | 1706                  | 1717                  | 1732                   | 1697    | 1708   | 1726  |
| Ethyl m-chlorobenzoate                | 1316                  | 1305                  | 1316                   | 1317    | 1318   | 1335  |
| 2-Chloroethyl m-chlorobenzoate        | 1537                  | 1540                  | 1551                   | 1535    | 1542   | 1555  |
| 2,2-Dichloroethyl m-chlorobenzoate    | 1624                  | 1632                  | 1646                   | 1618    | 1627   | 1643  |
| 2,2,2-Trichloroethyl m-chlorobenzoate | 1688                  | 1700                  | 1715                   | 1678    | 1690   | 1705  |
| Ethyl p-chlorobenzoate                | 1317                  | 1306                  | 1316                   | 1318    | 1323   | 1336  |
| 2-Chloroethyl p-chlorobenzoate        | 1537                  | 1540                  | 1551                   | 1536    | 1544   | 1558  |
| 2,2-Dichloroethyl p-chlorobenzoate    | 1625                  | 1633                  | 1647                   | 1622    | 1635   | 1647  |
| 2,2,2-Trichloroethyl p-chlorobenzoate | 1692                  | 1702                  | 1717                   | 1683    | 1696   | 1711  |

unchanged under various temperature-programmed and isothermal operating conditions; the variations between that of the closely related m- and p-isomers observed on OV-351 are negligible, however.

The Kováts retention indices of the aromatic esters investigated, obtained on SE-30 and OV-351 at a variety of temperatures, are presented in Tables II and III. Fig. 3 shows the retention indices on both stationary phases at 160°C, together with the retention enhancements that occurred on the polar column.

As usual, the retention increases with temperature, the effect being most pronounced on a polar column (Table III). As is evident in Fig. 3, the retention enhancement on SE-30 is linear with different levels of chlorine substitution, unlike that obtained on OV-351. The enhanced retentions on a polar column presented in Table III and Fig. 3 are 538-743 retention index units (i.u.) with benzoates, 555-784 i.u. with *p*-chlorobenzoates, 566-794 i.u. with *m*-chlorobenzoates and 640-853 i.u. with *o*-chlorobenzoates. The ethyl esters show the smallest and the mono- and dichloroethyl esters the greatest differences between the highly polar and low-polarity stationary phases (Fig. 3). The retention index ratios shown in Table III are close to 1.50, increasing for the esters in the following order: trichloroethyl < ethyl < dichloroethyl < monochloroethyl and *p*-chlorobenzoate  $\leq$  *m*-chlorobenzoate < benzoate < *o*-chlorobenzoate. The differences between the isomeric benzoates are negligible, however.

By comparing the retention behaviour of *n*-alkyl benzoates and monochlorobenzoates<sup>1</sup> with that of the  $\omega$ -chloroethyl esters studied in this work, it was found

| <b>RETENTION INDICES FOR ETHYL A</b>  | ND &-CHLORC           | ETHYL ES              | <b>FERS OF BEN</b>     | ZOIC A | NOW CIN   | OCHLOR | OBENZ | OIC ACIDS | 0N 0V-351         |
|---------------------------------------|-----------------------|-----------------------|------------------------|--------|-----------|--------|-------|-----------|-------------------|
| Compound                              | Column (0             | V-351) tempe          | rature                 |        |           |        |       | 160°C     |                   |
|                                       | Programme             | d from 100°C          | at                     | Isoti  | hermal at |        |       | Iov-351*  | Iov-351 - Ise-30* |
|                                       | 2°C min <sup>-1</sup> | 6°C min <sup>-1</sup> | 10°C min <sup>-1</sup> | 160°C  | 180°C     | 200°C  | 220°C | Ise-30    |                   |
| Ethyl benzoate                        | 1660                  | 1674                  | 1688                   | 1695   | 1704      | 1700   | 1692  | 1.46      | 538               |
| 2-Chloroethyl benzoate                | 2114                  | 2138                  | 2151                   | 2123   | 2146      | 2165   | 2179  | 1.54      | 743               |
| 2,2-Dichloroethyl benzoate            | 2211                  | 2238                  | 2252                   | 2213   | 2237      | 2258   | 2273  | 1.51      | 743               |
| 2,2,2-Trichloroethyl benzoate         | 2180                  | 2208                  | 2223                   | 2184   | 2210      | 2232   | 2250  | 1.42      | 648               |
| Ethyl o-chlorobenzoate                | 1951                  | 1964                  | 1980                   | 1965   | 1986      | 2009   | 2018  | 1.48      | 640               |
| 2-Chloroethyl o-chlorobenzoate        | 2417                  | 2442                  | 2456                   | 2398   | 2425      | 2449   | 2468  | 1.55      | 849               |
| 2,2-Dichloroethyl o-chlorobenzoate    | 2520                  | 2545                  | 2559                   | 2491   | 2520      | 2544   | 2565  | 1.52      | 853               |
| 2,2,2-Trichloroethyl o-chlorobenzoate | 2498                  | 2528                  | 2545                   | 2469   | 2501      | 2528   | 2552  | 1.45      | 761               |
| Ethyl m-chlorobenzoate                | 1856                  | 1870                  | 1893                   | 1884   | 1901      | 1920   | 1935  | 1.43      | 566               |
| 2-Chlorocthyl m-chlorobenzoate        | 2342                  | 2368                  | 2385                   | 2331   | 2359      | 2379   | 2398  | 1.51      | 789               |
| 2,2-Dichloroethyl m-chlorobenzoate    | 2438                  | 2467                  | 2483                   | 2421   | 2448      | 2470   | 2491  | 1.49      | 794               |
| 2,2,2-Trichloroethyl m-chlorobenzoate | 2383                  | 2416                  | 2428                   | 2366   | 2397      | 2420   | 2441  | 1.40      | 676               |
| Ethyl <i>p</i> -chlorobenzoate        | 1861                  | 1871                  | 1888                   | 1878   | 1899      | 1921   | 1939  | 1.42      | 555               |
| 2-Chloroethyl p-chlorobenzoate        | 2339                  | 2367                  | 2380                   | 2325   | 2354      | 2378   | 2396  | 1.51      | 781               |
| 2,2-Dichloroethyl p-chlorobenzoate    | 2440                  | 2468                  | 2484                   | 2419   | 2448      | 2472   | 2494  | 1.48      | 784               |
| 2,2,2-Trichloroethyl p-chlorobenzoate | 2391                  | 2423                  | 2439                   | 2372   | 2404      | 2430   | 2454  | 1.40      | 676               |
| * For retention indices on SE-30, se  | æ Table II.           |                       |                        |        |           |        |       |           |                   |

TABLE III

**NOTES** 

438



Fig. 3. Retention indices (I) for ethyl and  $\omega$ -chloroethyl esters of benzoic and o-, m- and p-chlorobenzoic acids, obtained on SE-30 and OV-351 at 160°C, and the retention enhancements that occurred on the polar column, *i.e.*,  $I_{\text{OV-351}} - I_{\text{SE-30}}$  (Tables II and III).

that on SE-30 the 2-chloroethyl esters are eluted later than the butyl esters, the 2,2di- and 2,2,2-trichloroethyl esters appearing between the pentyl and hexyl esters. Thus, one  $\omega$ -chlorine substituent in the alkyl group is equivalent to *ca*. two methylene groups, 2-3  $\omega$ -chlorine atoms corresponding to *ca*. 3-4 methylene groups. On OV-351 the influence of the  $\omega$ -chlorine substituents are more pronounced, *viz.*, one chlorine atom is equivalent to *ca*. 4-5 methylene groups, 2-3 chlorine atoms being equivalent to 5-6 methylene groups. The corresponding comparison between *n*-alkanols and  $\omega$ -chloroethanols showed an even greater effect of the chlorine substituents on the polar stationary phase<sup>7</sup>.

The incremental effects for the chlorine substitution in both the acyl and alkyl chains of the esters are shown in Tables IV and V, obtained with one temperature-

TABLE IV

INCREMENTAL EFFECTS FOR CHLORINE SUBSTITUTION IN THE ACYL AND ALKYL CHAINS OF THE ESTERS, OBTAINED ON SE-30 WITH **TEMPERATURE PROGRAMMING AND ISOTHERMAL OPERATION** 

| Compound                              | Colum   | un (SE-30)            | temperatur            |                                      |                      |                      |           |                       |          |                      |                     |                              |
|---------------------------------------|---------|-----------------------|-----------------------|--------------------------------------|----------------------|----------------------|-----------|-----------------------|----------|----------------------|---------------------|------------------------------|
|                                       | Progr   | ammed from            | 100°C at              | 5°C min <sup>-</sup>                 | _                    |                      | Isothe    | rmal at 160           | °C       |                      |                     |                              |
|                                       | 41*     | ΣΔΙ <sub>#Ci</sub> ** | 41 <sub>c1</sub> **** | <i>dI</i> <sub>1Cl<sup>§</sup></sub> | AI 2CI <sup>55</sup> | 413c1 <sup>888</sup> | 414       | ΣΔΙ <sub>nci</sub> ** | 41c1 *** | ∆I1 <sub>1Cl</sub> § | AI2cr <sup>88</sup> | <i>AI</i> 3cl <sup>988</sup> |
| Ethyl benzoate                        |         | 1                     | 1                     |                                      | +                    | 1                    |           |                       | +        | 1                    | 1                   |                              |
| 2-Chloroethyl benzoate                | I       | 225                   | 225                   | 225                                  | 1                    | I                    | I         | 223                   | 223      | 223                  | ł                   | 1                            |
| 2,2-Dichloroethyl benzoate            | ł       | 316                   | 158                   | 225                                  | 91                   | ł                    | ł         | 313                   | 157      | 523                  | 8                   | I                            |
| 2,2,2-Trichloroethyl benzoate         | 1       | 388                   | 129                   | 225                                  | 16                   | 72                   | ł         | 379                   | 126      | 223                  | 8                   | 99                           |
| Ethyl o-chlorobenzoate                | 168     | ł                     | I                     | I                                    | I                    | 1                    | 168       | I                     | I        | ł                    | I                   | 1                            |
| 2-Chloroethyl o-chlorobenzoate        | 173     | 230                   | 230                   | 230                                  | ł                    | 1                    | 169       | 224                   | 224      | 224                  | 1                   | 1                            |
| 2,2-Dichloroethyl o-chlorobenzoate    | 178     | 326                   | 163                   | 230                                  | 96                   | Ι                    | 168       | 313                   | 157      | 224                  | 89                  | I                            |
| 2,2,2-Trichloroethyl o-chlorobenzoate | 186     | 406                   | 135                   | 230                                  | <u>8</u>             | 80                   | 172       | 383                   | 128      | 224                  | 68                  | 70                           |
| Ethyl m-chlorobenzoate                | 162     | I                     | I                     | I                                    | I                    | ľ                    | 161       | I                     | ł        | ł                    | I                   | I                            |
| 2-Chloroethyl m-chlorobenzoate        | 172     | 235                   | 235                   | 235                                  | 1                    | I                    | 162       | 224                   | 224      | 224                  | I                   | 1                            |
| 2,2-Dichloroethyl m-chlorobenzoate    | 173     | 327                   | 164                   | 235                                  | 92                   | ı                    | 157       | <b>60</b> E           | 155      | 224                  | 85                  | ł                            |
| 2,2,2-Trichloroethyl m-chlorobenzoate | 169     | 395                   | 132                   | 235                                  | 92                   | 89                   | 154       | 372                   | 124      | 224                  | 85                  | 63                           |
| Ethyl <i>p</i> -chlorobenzoate        | 163     | I                     | I                     | 1                                    | I                    | I                    | 166       | I                     | I        | I                    | 1                   | ł                            |
| 2-Chloroethyl p-chlorobenzoate        | 172     | 234                   | 234                   | 234                                  | I                    | ł                    | <u>16</u> | 221                   | 221      | 221                  | ł                   | I                            |
| 2,2-Dichloroethyl p-chlorobenzoate    | 174     | 327                   | 164                   | 234                                  | 93                   | 1                    | 165       | 312                   | 156      | 221                  | 16                  | I                            |
| 2,2,2-Trichloroethyl p-chlorobenzoate | 171     | 396                   | 132                   | 234                                  | 93                   | 69                   | 160       | 373                   | 124      | 221                  | 16                  | 61                           |
| * Retention index increment for       | the chl | orine substi          | tution in th          | ne acvl ch                           | ain. i.e I           |                      | 1         | /                     |          |                      |                     |                              |

\*\* Total retention index increment for the chlorine substitution in the alkyl chain, *i.e.*, *I*a-abroathy ester - *I* east

\*\*\* Retention index increment per chlorine atom in the alkyl chain, *i.e.*,  $\Sigma dI_{nCl}/number of the chlorine atoms.$ 

§ Retention index increment for the first chlorine atom, *i.e.*,  $I_{monoculoroeinyl enter} - I_{einyl enter}$ 

Sector for the second chlorine atom, *i.e.*,  $I_{\text{dishloroethyl}}$  enter  $-I_{\text{monochloroethyl}}$  enter. Retention index increment for the third chlorine atom, *i.e.*,  $I_{\text{ulchloroethyl}}$  enter  $-I_{\text{dishloroethyl}}$  enter-

| INCREMENTAL EFFECTS FOR CI<br>WITH TEMPERATURE PROGRAM | HLORI | NE SUBST<br>AND ISO   | ITUTION         | IN THE                | ACYL A              | ND ALK               | YL CH  | AINS OF               | THE ESTI | ers, obt            | AINED               | N OV-351            |
|--------------------------------------------------------|-------|-----------------------|-----------------|-----------------------|---------------------|----------------------|--------|-----------------------|----------|---------------------|---------------------|---------------------|
| Compound                                               | Colum | un (OV-351            | ) temperatı     | ue                    |                     |                      |        |                       |          |                     |                     |                     |
|                                                        | Progr | ammed from            | 100°C at (      | s°C min <sup>-1</sup> | _                   |                      | Isothe | rmal at 160           | °C       |                     |                     |                     |
|                                                        | 414   | ΣΔI <sub>nci</sub> ** | 41ci ****       | 411ci <sup>§</sup>    | AI2cr <sup>88</sup> | ΔI <sub>3ct</sub> 88 | 11     | 241 <sub>nci</sub> ** | 41ci *** | 4Iıcı <sup>\$</sup> | AI <sub>2Cl</sub> % | ∆I <sub>3ci</sub> ₩ |
| Ethyl benzoate                                         |       |                       |                 | 1                     | 1                   | 1                    |        |                       |          |                     | 1                   |                     |
| 2-Chloroethyl benzoate                                 | I     | 464                   | <del>1</del> 64 | 464                   | ١                   | I                    | ł      | 428                   | 428      | 428                 | I                   | 1                   |
| 2,2-Dichloroethyl benzoate                             | ł     | 564                   | 282             | <del>4</del> 64       | 100                 | I                    | I      | 518                   | 259      | 428                 | 8                   | 1                   |
| 2,2,2-Trichloroethyl benzoate                          | 1     | 534                   | 178             | <u>4</u>              | 100                 | - 30                 | I      | 489                   | 163      | 428                 | 8                   | - 29                |
| Ethyl o-chlorobenzoate                                 | 290   | I                     | 1               | ł                     | 1                   | ł                    | 270    | ł                     | ł        | l                   | I                   | I                   |
| 2-Chloroethyl o-chlorobenzoate                         | 304   | 478                   | 478             | 478                   | 1                   | I                    | 275    | 433                   | 433      | 433                 | ł                   | ł                   |
| 2,2-Dichloroethyl o-chlorobenzoate                     | 307   | 581                   | 291             | 478                   | 103                 | ł                    | 278    | 526                   | 263      | 433                 | 93                  | i                   |
| 2,2,2-Trichloroethyl o-chlorobenzoate                  | 320   | 564                   | 188             | 478                   | 103                 | -17                  | 285    | <b>504</b>            | 168      | 433                 | 93                  | -22                 |
| Ethyl m-chlorobenzoate                                 | 196   | I                     | ı               | I                     | 1                   | I                    | 189    | I                     | ı        | ı                   | I                   | I                   |
| 2-Chloroethyl m-chlorobenzoate                         | 230   | 498                   | 498             | 498                   | 1                   | I                    | 208    | 447                   | 447      | 447                 | 1                   | I                   |
| 2,2-Dichloroethyl m-chlorobenzoate                     | 229   | 597                   | 299             | 498                   | 66                  | I                    | 208    | 537                   | 269      | 447                 | 8                   | ļ                   |
| 2,2,2-Trichloroethyl m-chlorobenzoate                  | 208   | 546                   | 182             | 498                   | 66                  | 51                   | 182    | 482                   | 161      | 447                 | 8                   | - 55                |
| Ethyl p-chlorobenzoate                                 | 197   | ł                     | I               | ł                     | ł                   | 1                    | 183    | ł                     | I        | ı                   | ļ                   | I                   |
| 2-Chloroethyl p-chlorobenzoate                         | 229   | 496                   | 496             | 496                   | I                   | I                    | 202    | 447                   | 447      | 4                   | 1                   | I                   |
| 2,2-Dichloroethyl p-chlorobenzoate                     | 230   | 597                   | 299             | 496                   | 101                 | I                    | 206    | 541                   | 271      | 447                 | 94                  | 1                   |
| 2,2,2-Trichloroethyl p-chlorobenzoate                  | 215   | 552                   | 184             | 496                   | 101                 | -45                  | 188    | 494                   | 165      | 447                 | 2                   | -47                 |
|                                                        |       |                       |                 |                       |                     |                      |        |                       |          |                     |                     |                     |

**TABLE V** 

\*,\*\*,\*\*\*,§,§§,§§§ As in Table IV.

#### TABLE VI

| Retention increment*                 | Ester set | ries          |                   |                      |
|--------------------------------------|-----------|---------------|-------------------|----------------------|
|                                      | Ethyl     | 2-Chloroethyl | 2,2-Dichloroethyl | 2,2,2-Trichloroethyl |
| SE-30 column                         |           | ·····         |                   |                      |
| ∆I <sub>o-Cl</sub>                   | 168       | 169           | 168               | 172                  |
| ∆I <sub>m-Cl</sub>                   | 161       | 162           | 157               | 154                  |
| ∆I <sub>p-Cl</sub>                   | 166       | 164           | 165               | 160                  |
| $\Delta I_{o-C1} - \Delta I_{p-C1}$  | 2         | 5             | 3                 | 12                   |
| $\Delta I_{p-Cl} - \Delta I_{m-Cl}$  | 5         | 2             | 8                 | 6                    |
| OV-351 column                        |           |               |                   |                      |
| ∆I <sub>e-Cl</sub>                   | 270       | 275           | 278               | 285                  |
| $\Delta I_{m-Cl}$                    | 189       | 208           | 208               | 182                  |
| ΔIp-Cl                               | 183       | 202           | 206               | 188                  |
| $\Delta I_{p-Cl} - \Delta I_{p-Cl}$  | 87        | 73            | 72                | 97                   |
| $\Delta I_{p-Cl} - \Delta I_{m-Cl}$  | -6        | -6            | -2                | 6                    |
| $\Delta I_{OV-351}/\Delta I_{SE-30}$ |           |               |                   |                      |
| o-Cl                                 | 1.61      | 1.63          | 1.65              | 1.66                 |
| m-Cl                                 | 1.17      | 1.28          | 1.32              | 1.18                 |
| p-Cl                                 | 1.10      | 1.23          | 1.25              | 1.18                 |

#### SEPARATION BETWEEN MONOCHLOROBENZOATES ON SE-30 AND OV-351 AT 160°C AND THE RETENTION INCREMENT RATIOS BETWEEN THE COLUMNS

\*  $\Delta I = I_{\text{monochlorobenzoate}} - I_{\text{benzoate}}$ .

programmed and isothermal operation on SE-30 and OV-351, respectively. Separation between monochlorobenzoates on both columns at 160°C is shown in Table VI, which also gives the retention increment ratios between the columns.

Although the retention increments are not presented at a variety of temperatures, it is evident (Tables II and III) that the increments remain fairly constant on SE-30, but increase with temperature on OV-351. It is also clear that particularly on SE-30 (Tables IV and VI) the chlorine substitution in the alkyl chain has a negligible influence on the incremental effect for the chlorine substituent in the acyl chain. The increments on SE-30 at 160°C are in the ranges 168–172 i.u. for o-, 154–162 i.u. for m- and 160-166 i.u. for p-chlorobenzoates. On OV-351 the corresponding increments are increased, particularly with the o-isomers, owing to the maximization of the polar effects<sup>1</sup>, i.e., 270-285 i.u. for o-, 182-208 i.u. for m- and 183-206 i.u. for p-chlorobenzoates (Tables V and VI). The increment with the o-isomers increases with increasing degree of chlorination, obviously owing to the increased loss of electron density occurring in the phenyl ring. This causes the enhancement of the retention of the o-isomers with respect to the parent esters on a polar OV-351 phase containing electron-donating groups<sup>1</sup>. With the m- and p-isomers the greatest effects are shown by the mono- and dichloro esters, being markedly lower with the trichloro esters. This would indicate the most electron-deficient ring of the former esters.

The incremental effects for the chlorine substituents in the alkyl chain as presented in Tables IV and V show that the acyl group has a small influence on the increments, particularly on SE-30. The increments for the first, second and third chlorine atoms on SE-30 at 160°C are in the ranges 221–224, 85–91 and 61–70 i.u.,

respectively (Table IV). As with the corresponding alcohols<sup>7</sup>, the effect decreases with increasing degree of chlorination, unlike with the chlorinated acetic acid esters<sup>8-10</sup>.

On a highly polar OV-351 stationary phase (Table V) the increment for the first chlorine atom is increased up to 428-447 i.u., that for the second chlorine atom being in the same range as on SE-30, *i.e.*, 90-94 i.u. Unlike 2,2,3-trichloroethanol<sup>7</sup> and like the esters of trichloroacetic acid<sup>8-10</sup>, the third chlorine atom shows a reduction in the retention, *viz.*, from -22 to -55 i.u., the retention decrease being greatest with *m*-chlorobenzoate (Table V). The reductions observed are in the same range as with the acetate esters, owing to the increased influence of steric effects on the polar stationary phase<sup>8</sup>.

The retention increment ratios between the highly polar and low-polarity columns as presented in Table VI indicate that the polar effects are maximized with the *o*-isomers and particularly with the trichloroethyl ester. With the *m*- and *p*-isomers, however, the polar effects are maximized with the dichloroethyl esters, whereas with further chloro substitution the steric effects are the most apparent, as shown from the lower increment ratios of the trichloroethyl esters. Possible reasons for the phenomena observed are as mentioned above and in the previous papers<sup>1,11</sup>.

## ACKNOWLEDGEMENTS

I.O.O.K. gratefully acknowledges the Kalle and Dagmar Välimaa Foundation (Cultural Foundation of Finland), the Medica Corporation Research Foundation and the Alfred Kordelin Foundation for grants and the Academy of Finland (the National Research Council for Sciences) for financial support.

#### REFERENCES

- 1 I. O. O. Korhonen and M. A. Lind, J. Chromatogr., 322 (1985) 83.
- 2 I. O. O. Korhonen and M. A. Lind, J. Chromatogr., 323 (1985) 331.
- 3 I. O. O. Korhonen and M. A. Lind, J. Chromatogr., 324 (1985) 113.
- 4 I. O. O. Korhonen and M. A. Lind, J. Chromatogr., 322 (1985) 97.
- 5 I. O. O. Korhonen, J. Chromatogr., 329 (1985) 43.
- 6 J. D. Edwards, W. Gerrard and M. F. Lappert, J. Chem. Soc., (1957) 353.
- 7 I. O. O. Korhonen, J. Chromatogr., 324 (1985) 181.
- 8 J. K. Haken, B. G. Madden and I. O. O. Korhonen, J. Chromatogr., 256 (1983) 221.
- 9 I. O. O. Korhonen, J. Chromatogr., 288 (1984) 51.
- 10 I. O. O. Korhonen, J. Chromatogr., 288 (1984) 329.
- 11 J. K. Haken, H. N. T. Hartley (nee Dinh) and D. Srisukh, Chromatographia, 17 (1983) 589.